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Abstract. Within the real space renormalisation group framework, we discuss the critical 
point and exponent v of the Potts ferromagnet in b-sized Migdal-Kadanoff-like hierarchical 
lattices. Both b + cc and b + 1 limits are exhibited. The important discrepancies that might 
exist between the exact results for d-dimensional hierarchical lattices and d-dimensional 
Bravais lattices are illustrated. 

1. Introduction 

The study of the criticality of magnetic models (e.g., the Potts model) on d-dimensional 
Bravais lattices is frequently replaced, within some real space renormalisation group 
( RG) techniques, by the study of d,dimensional hierarchical lattices which satisfy df+ d 
in the limit of large cells ( b  + a?). (Here dr= intrinsic fractal dimensionality = 
In N,/ln b, where Nb is the number of bonds of the two-rooted graph whose iteration 
generates the hierarchical lattice, and b is the chemical distance between its roots 
[ 1,2]. It is important to evaluate, both qualitatively and quantitatively, the benefits 
as well as the restrictions of such procedures (see [l-31 and references therein). A 
very simple and commonly used framework is the Migdal-Kadanoff (or bond-moving) 
framework [4] which is based on the so-called diamond hierarchical lattice. Here we 
generalise this procedure through a comprehensive discussion of the criticality of the 
q-state Potts ferromagnet. This constitutes a clear illustration of analogies and  dis- 
crepancies between Bravais and hierarchical lattices. Some of the results appearing 
in [ l ]  and [5] ( q = 2  and the b +  1 limit for q = 1, respectively) are herein recovered 
as particular cases. 

2. Model and formalism 

We consider the b-sized, d-dimensional diamond (tress) hierarchical lattice; it is defined 
through infinite iteration of a two-rooted graph which consists in an  array of bd- ' (  b) 
strings in parallel (series), each of them constituted by b( bd - ' )  bonds in series (parallel). 
Typical lattices of this type are presented in figure 1. Two important topological 
properties are verified: ( i )  for all b and d and both diamond and  tress types, the 
intrinsic fractal dimensionality is given by dr= In bd/ ln  b = d and (ii) for arbitrary 
fixed b and d = 2, and only in this case, the diamond and  tress hierarchical lattices 
are dual of each other. 
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Figure 1. Typical b-sized d-dimensional two-rooted graphs and their corresponding hierar- 
chical lattices (3  and 0 denote the roots and internal sites respectively). 

Each bond of these lattices represents the elementary Potts interaction, whose 
Hamiltonian is given by E =  -qJS, , , , (J  > 0; the site variables U, and U, take the values 
1,2,. . . , 9 ) .  We introduce the convenient variable 

t = [ 1 - exp( - q J /  k,T)]/[ 1 + ( q  - 1) exp( - q J / k , T ) ]  

(named thermal transmissivity [6]). Both diamond and tress graphs are reducible in 
series and parallel operations. Therefore the corresponding transmissivities (denoted 
GD and G, respectively) can be easily calculated [ 6 ] ,  thus yielding 

and 

1 - r  
1 + ( q  - 1) t  

Let us now focus on the diamond case (the tress case is strictly analogous). We 
renormalise, for fixed d and q, a b-sized graph into a b'-sized one. Within this approach 
(hereafter referred to as R G h b , )  the recursive relation is given by 

( 3 )  

This equation admits, for all ( b ,  b', d,  q )  two trivial (stable) fixed points, namely t = 0 
(paramagnetic phase; P) and r = 1 (ferromagnetic phase; F), as well as a critical 
(unstable) fixed point denoted f $ b '  which satisfies 

(4) 

G D ( ~ ' ;  b', d, q )  = G D ( ~ ;  b, d, 41. 

GD(t$b ; b', d, 9 )  = GD(~$K;  b, d, 4 ) .  
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( 5 )  

3. Results 

The critical point t&,, depends on (b, b', d, 9). These dependences are illustrated in 
figure 2 (b-evolution of t:, and for d = q = 2) and figure 3 ( t ; ,  as a function of 
(d, 4 ) ) .  The values obtained for tgl  are exact for the corresponding hierarchical lattices. 

square lattice 
- - - - - - - - - 

~ -'=I i ' Z b - 1  

i ]tress 

t X  0.5 

0 10 20 
b 

Figure 2. Critical points r&, plotted against size b within the R G ~ ~  approach for 4 = d = 2, 
with b'= 1 and b' = b - 1, for both diamond and tress types; - - denotes the exact result 
for the lsing ferromagnet in the square lattice. 

The critical exponent vbb'  depends on (b, b', d, q ) ,  but its value is one and the same 
for the diamond and tress cases. These dependences are illustrated in figure 4 (b -  
evolution of v b l  and V b , b - ]  for d = q = 2) and figure 5 ( v21 as a function of (d, 4 ) ) .  The 
values obtained for v b ,  are exact for the corresponding hierarchical lattices. The 
d-dependence of v21 at a fixed value of q deserves the following comments. 

( i )  For q high enough ( q  above qmax = 2), v 2 ]  presents, as a function of d, a minimum 
at a value of d (hereafter referred to as dmi,,), and  then increases again and reaches 
the value 1 in the d + 00 limit; dZin monotonically increases with increasing q and 
finally diverges in the q + 00 limit. The whole convergence is a non-uniform one. We 
verify that 

lim v 2 , ,  = l / d  d s l  
q - x  

which confirms the conjecture [2] that limq-x vb., = l / d f .  Also, limd-= 1imq+= v21 = 0 
while limq+= 1imd+= v 2 1  = 1. 

( i i )  For q low enough ( q  below qmln-0.215), v 2 1  presents, as a function of d, a 
local maximum at a value of d (hereafter referred to as d,,,), and diverges in the 
d + 1 limit; d,,, monotonically increases from slightly below 2 to 2 while q decreases 
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Figure 3. Dependence of the critical point I* on q and d within the R G ~ ~  approach for 
( a ) ,  ( b )  diamond and ( c ) ,  ( d )  tress. In ( a )  and ( c )  the exact results for square lattice has 
been included for comparison. In (6 )  and ( d )  the results corresponding to the lsing 
ferromagnet in the hypercubic lattice have been included for comparison, the broken line 
being a guide to the ele .  

from qmrn to 0; v 2 1  (dmaJ monotonically increases from about 2.96 to infinity while q 
decreases from qmln  to 0. Consistent with these observations, the q = 0 curve vZ1 against 
d presents two branches: (a )  in the interval 1 d c 2 ,  v21 presents a minimum at d = 1.5 
and v 2 1  = 3.36, and diverges in both the d + 1 + 0 and d + 2 - 0 limits and (b)  for d 2 2, 
v2, monotonically decreases from infinity to one while d increases from 2 to infinity. 

Points (i) and (ii) above have been verified for v z l .  Although we have not systemati- 
cally checked, similar facts are expected for V b h .  Summarising, three regimes are 
observed, as follows. 

( i )  0 6  q < qm," : except for a local maximum in the neighbourhood of d = 2,  the 
general trend of vbh is to decrease from infinity to one while d increases from one to 
infinity. 

(ii) q m l n s  qs qmdx:  Vbb monotonically decreases from infinity to one while d 
increases from one to infinity; 

( i i i )  4 > qmax: v h b  presents a minimum while d increases from one to infinity ( v b b  

diverges in the d -+ 1 limit, and goes to one in the d + ccj limit). 
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Figure4. Critical exponent Y plotted against size b within the R G , , ~ .  approach for 9 = d = 2, 
with b ' =  1 and b' = b - 1, for both diamond and tress types (one and the same); - .  - 
denotes the exact result for the Ising ferromagnet in the square lattice. 
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Figure 5. Dependence of the critical exponent Y on 9 and d within the R G , ~  approach 
(one and the same for both diamond and tress types). ( a )  U against 9 for typical values 
of d (the exact result for square lattice has been included for comparison). ( b )  U against 
d for typical values of 9 (the results corresponding to the Ising ferromagnet in the hypercubic 
lattice have been included for comparison, the broken line being a guide to the eye). 
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Another point which deserves comment is the b + m  behaviour of r&*  and Yhb'. 

Our  numerical results are consistent with the following behaviours. 
(i) Diamond lattices: ? X I  - 1 - ( d  - 1) In b /  b ( V q ) ,  and fg.b-1- 1 - A (  d, q ) /  b, 

A(d, q )  being a pure number which satisfies A( l ,  q )  = 0 (similar laws are obtained for 
the tress lattices). 

(ii) Diamond and tress lattices: vb, I - B ( d )  In bllnln b ( V q ) ,  B ( d )  being a pure 
number which decreases for increasing d ;  Yb.b-1 becomes almost independent of b and  
practically coincides, in the b + m limit, with v,,(d, q )  (see figure 5). 

The result obtained for vb, ]  is in variance with the behaviour expected for lattices 
with finite critical temperature (i.e. 0 < limb+3c,b'<b t& < 1). In such cases, finite-size 
scaling arguments [7] usually suggest, in the b -$ CC limit, a logarithmic approach to a 
finite value. 

Let us now turn our attention to a different type of limit, namely the differential 
one (i.e. b '= 1 and  b = I + p with p -$ 0 +). We first notice that if we consider the 
hierarchical lattices generated by the b-sized d -dimensional generalised Wheatstone- 
bridge graphs (see [2] and  references therein) with transmissivity denoted by Gw, we 
have, for all ( t ;  b, d, q ) ,  

( 7 )  
This is a trivial consequence of the fact that the transmissivity of any graph is a 
monotonously increasing function of the elementary transmissivity of any of its bonds, 
together with the fact that the breaking (collapsing) of all the 'transverse' bonds of 
the Wheatstone-bridge graph precisely yields the diamond (tress) graph [6]. It is then 
straightforward to verify that, in the b + 1 limit, the R G ~ ]  recursive relation is one and  
the same for both diamond and tress cases (and consequently for the Wheatstone-bridge 
case as well, as it is between the other cases), namely 

G D ( ~ ;  b, 4 q ) s  G w ( t ;  b, d, q ) s  Gdt;  b, d, 4 ) .  

The associated critical fixed point t* satisfies 

I n (  * - ' *  ). (1 - t*)[ 1 + ( q  - 1)t*] 
t* In t * =  (d - 1) 

4 1 + ( q  - I ) [ *  (9) 

This equation yields the results presented in figure 6 as well as the following three results: 

d + l + O  (10) 
- 1 - q - l / ( d - l l  

which coincides with the asymptotically exact result for the d-dimensional hypercubic 
lattice [8], 

r *  = 1 / ( 4 +  1)  d = 2  (11) 

t* - exp [ -( d - l ) ]  d + m  (12) 

which coincides with the exact result for the square lattice, and 

which differs from the exact result for the d-dimensional hypercubic lattice. 
The fact that the d + 1 result is asymptotically coincident with that of the d- 

dimensional hypercubic lattice arises from the fact that the linear chain has a special 
geometrical property, namely that it is simultaneously scale invariant (hierarchical 
lattice) and  translationally invariant (Bravais lattice). The fact that the d = 2 result 
exactly recovers that of the square lattice arises from the confluence of the diamond 
and  trees transmissivities of the self-dual Wheatstone-bridge transmissivity. This is a 
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Figure 6. Dependence of the critical point I* on q and d within the differential RG approach 
(b‘= 1 and b+ 1). ( a )  t* against q for typical values of d (the d = 2 curve coincides with 
the exact one for square lattice). ( b )  I* against d for typical values of q (the results 
corresponding to the king ferromagnet in the hypercubic lattice have been included for 
comparison, the broken line being a guide to the eye). 

manner for understanding why the differential Migdal-Kadanoff approach preserves 
self-duality. 

From equation (8) we also obtain the thermal critical exponent 

This equation yields the results presented in figure 7 as well as the result 

v -  l / (d  - 1 )  d + 1 + 0  (14) 

which recovers the exact result for the d-dimensional hypercubic lattice [8] and th’e 
two results 

(15 )  v-l = 2[  1 - (I/&) In (&+ I ) ]  d = 2  

and 

v + l  d+oo (16) 

which do not recover the exact results for the hypercubic lattice. 

4. Conclusion 

Let us summarise the main features of the present RG approach of the q-state Potts 
ferromagnet in hierarchical lattices. This approach is based on the renormalisation of 
b-sized two-rooted d-dimensional Migdal-Kadanoff -like graphs into b’-sized ones 
(b’ < b) .  The results associated with b’ = 1 are, as usual, exact for the corresponding 
hierarchical lattices. 
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Figure 7. Dependence of the critical exponent v on 9 and d within the differential RG 

approach (6'= 1 and 6+ 1). ( a )  U against 9 for typical values of d (the exact result for 
square lattice has been included for comparison). (6) v against d for typical values of 9 
(the results corresponding to the Ising ferromagnet in hypercubic lattice have been included 
for comparison; the broken line being a guide to the eye). 

Let us first stress an important point: transitions are, for all d 3 1 and all q 2 0, of 
the continuous type. This fact presents a remarkable discrepancy with Bravais lattices, 
which are known to yield first-order phase transitions for all d > 1 if q is high enough. 
In other words, the loss of the translational invariance of the system makes discon- 
tinuous phase transitions disappear. 

Another interesting point is that, for fixed (b ,  b', d, q ) ,  the diamond and  tress types 
present a different critical point but share one and the same value of v. The ti 

dependence of v, at a fixed value of q, presents three different shapes according to 
whether q is in the interval [O, qmln),  [qmin, qmax] or (qmax,  a). In the first case v 
presents a local minimum and a local maximum in the interval 1 < d S 2 ,  and monotoni- 
cally decreases down to one for d increasing above 2 .  In the second case, v monotoni- 
cally decreases down to one for d increasing above one. In  the third case, v presents 
a minimum at a value of d which increases when q increases; also Iimq.+= v = l / d .  

The b + 00 behaviours for ?* and v are somewhat different from what is normally 
found for Bravais lattices. However, the reason for that might be not the loss of 
translational invariance but rather the fact that the critical temperature for the present 
cases is, in the b + a limit, not finite ( T ,  = 0 for diamonds, and  Tc+ a for tresses). 

Finally, let us note that, in both b'= b - 1 with b + 00 and b'= 1 with b + 1 cases, 
the linear expansion factor b/b '  tends to unity. However, important differences are 
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found for these two situations. For instance, in the former t * + O  or 1 while in the 
latter t* becomes a finite value between 0 and  1. In some sense, this type of discrepancy 
reinforces the well known fact that the knowledge of the intrinsic fractal dimensionality 
of an hierarchical lattice is nothing but one (though an important one) of the many 
ingredients which determine their criticality. 
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